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Enhancing Scalability of Parallel Structured AMR
Calculations∗

Andrew M. Wissink, David Hysom, Richard D. Hornung
Center for Applied Scienti£c Computing

Lawrence Livermore National Laboratory
[awissink,hysom,hornung]@llnl.gov

ABSTRACT
This paper discusses parallel scaling performance of large
scale parallel structured adaptive mesh refinement (SAMR)
calculations in SAMRAI. Previous work revealed that poor
scaling qualities in the adaptive gridding operations in SAMR
calculations cause them to become dominant for cases run
on up to 512 processors. This work describes algorithms
we have developed to enhance the efficiency of the adaptive
gridding operations. Performance of the algorithms is evalu-
ated for two adaptive benchmarks run on up 512 processors
of an IBM SP system.

1. INTRODUCTION
Structured adaptive mesh refinement (SAMR) [2, 3] is an
effective technique for focusing computational resources in
numerical simulations of partial differential equations that
span a range of disparate length and time scales [5, 6]. AMR
is used to dynamically increase grid resolution locally to
resolve important fine-scale features in the solution. The
goal is to achieve a more efficient computation than one
in which a globally-uniform fine grid is applied. SAMR is
a particular brand of adaptive mesh refinement technology
in which the locally-refined grid is defined with structured
grid components. Like other dynamic mesh refinement ap-
proaches, SAMR presents complications for parallel com-
puting that are absent in uniform grid calculations. Com-
plex data communication arises from the need to transfer
data between grid regions of differing resolution on irreg-
ular locally-refined grid configurations. Since grid genera-
tion may be performed frequently, the complexity of com-
puting grid-dependent data exchange information cannot be
amortized over an entire calculation. Also, substantial data
transfers may occur as the grid is refined and coarsened.

∗This work was performed under the auspices of the U.S. De-
partment of Energy by University of California Lawrence
Livermore National Laboratory under contract number W-
7405-Eng-48. UCRL-XX-XXXX.

The SAMRAI (Structured Adaptive Mesh Refinement Ap-
plication Infrastructure) [12, 11, 13] provides parallel SAMR
infrastructure support for a number of multi-physics appli-
cations [7, 10]. It provides general adaptive meshing and
data management capabilities as well as a flexible algorithm
development framework. In this paper we focus on the
performance of parallel calculations with SAMRAI. Specifi-
cally, inefficiencies that arise when problem sizes are scaled
up to large numbers of processors and algorithms that we
have adopted to enhance their efficiency. We present results
for simple benchmark applications that use the same solu-
tion technique and algorithms as are used in more complex
multi-physics applications. Hence, the efficiency enhance-
ment techniques described in this paper apply generally to
all applications implemented in SAMRAI, and should be
applicable to other SAMR applications as well.

This paper begins by presenting background information
about the characteristics of the adaptive problems solved in
this paper. We highlight certain sources of inefficiency and
introduce algorithms developed to enhance performance. Lastly,
we present performance results of adaptive calculations per-
formed using the new algorithms. We provide a breakdown
of computational costs in benchmark calculations run on up
to 512 processors of ASCI IBM Blue Pacific and on a large-
scale Linux cluster.

2. SAMR BACKGROUND
The basic features of the SAMR approach are rooted in the
work of Berger, Oliger, and Colella [2, 3]. The computa-
tional grid consists of a collection of structured grid com-
ponents, organized into a hierarchy of nested levels of spa-
tial (and often temporal) grid resolution. Each level in the
hierarchy represents a domain with uniform grid spacing.
The domain on each level is expressed as a disjoint union
of logically-rectangular “patch” regions (see Fig. 1). A finer
level is constructed by selecting cells that require refinement
and clustering these cells into a new set of patches. Bound-
ary conditions on the finer level patches are obtained from
interpolated data on the next coarser level in the hierarchy,
or from neighboring patches with the same mesh spacing.
As the solution evolves, it is necessary to move, resize, or
remove finer level patches as dictated by the needs of the
computation.

In the SAMR approach, the refinement factor is constrained
to be an integer so that meshes on all levels align. Finer
level patches are rectangular and are always nested within
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Figure 1: Breakdown of computational mesh in
SAMRAI.

Figure 2: Fine patches resolving discontinuity.
When resolving a feature in a SAMR calculation, it
is typical to use many smaller patches rather than a
few large patches because the refined region can be
more efficiently placed around the feature.

the domain of the next coarser level. All levels in the hi-
erarchy are stored, so that fine levels are stored in addition
to, not instead of, the overlapped coarser level. This may
at first seem wasteful, but it is generally the case that finer
levels require much more storage than coarser (e.g. consider
a typical three-dimensional problem with a refine ratio of 4;
every refined coarse grid cell will be covered by 64 fine grid
cells in the refined region). The overhead is consequently
quite small. The reduction in the number of gridcells in the
adaptive method, relative to its uniform-grid counterpart, is
highest when the refined region represents a small percent-
age of the overall domain of the problem. In most problems,
the phenomenon resolved through grid refinement is a com-
plex non-rectangular shape that is most-efficiently captured
using a number of smaller patches, as opposed to a single
refined large patch block (see Fig. 2).

3. SAMRAI
SAMR offers potentially large savings in memory and com-
putational effort when compared to globally-uniform static
mesh calculations. However, difficulties associated with its
implementation often make the application of SAMR pro-
hibitive. Apart from the development of numerical meth-
ods for locally-refined grids, it is important to keep in mind
the complexity of data management and communication on

parallel systems. Data must be exchanged among irregu-
larly configured patch regions on a single level and between
patches on different levels of resolution. These data commu-
nication patterns change whenever the grid changes. Data
management becomes more complex in multi-physics appli-
cations. Such problems typically involve many data quan-
tities with different centerings on the grid (cell-centered,
node-centered, etc.), irregular data such as particles, and
different solution procedures that share variables and use
distinct data communication patterns.

The SAMRAI framework facilitates parallel multi-physics
SAMR applications by providing software tools to manage
the complex data exchanges. The object-oriented software
design used in SAMRAI captures the salient features of data
communication in SAMR applications in a general frame-
work, enabling extensible and specializable high-level algo-
rithm components as well as allowing application developers
to specialize operations for their needs. Further discussion
of algorithmic design components of SAMRAI is given in
ref [12]. The communication infrastructure is discussed in
ref [13].

The framework has been used for a variety of parallel multi-
physics applications. Dorr, Garaizar, and Hittinger [7] use
SAMRAI to develop an adaptive simulation of laser-plasma
instabilities. Hornung and Garcia [10, 8] have developed
a “hybrid” simulation capability in SAMRAI which uses
SAMR to couple an Eulerian fluid model to a Direct Sim-
ulation Monte Carlo (DSMC) [1] particle model to model
complex fluid interface dynamics, such as the Richtmeyer-
Meshkov instability. Anderson and Pember have used SAM-
RAI to couple Arbitrary Lagrangian-Eulerian hydrodynam-
ics solution techniques with the Adaptive Mesh Refinement
for higher-fidelity resolution of shock hydrodynamics appli-
cations. In each of these cases, SAMRAI provides high-level
solution algorithm components as well as the parallel com-
munication infrastructure.

In this paper, we do not focus on the performance of a sin-
gle application. Rather, we construct simple benchmarks
that exercise the algorithms fundamental to all applications
implemented in SAMRAI. Of course, each application may
have its own particular parallel performance issues. But it
is fair to say that any application implemented in SAMRAI
should benefit from the performance improvements we ex-
plore herein.

4. APPLICATION BENCHMARKS
We evaluate SAMRAI performance for standard SAMR ap-
plications that use the well-known explicit hydrodynamics
algorithm of Berger and Colella [2]. The algorithm uses
both spatial and temporal mesh refinement during time in-
tegration and applies numerical flux correction operations
to maintain global conservation across multiple refinement
levels. Object-oriented features of the SAMRAI implemen-
tation of this algorithm and its use in other applications are
described elsewhere [12]. Here, we focus on aspects relevant
to parallel performance.

4.1 SAMR Algorithm
During time advancement, re-meshing operations are inter-
leaved with integration steps. During re-meshing, computa-



Figure 3: Density contours overlaid on adaptive grid
system for spherical shock calculation.
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Figure 4: The number of cells on the finest level
grows during the coarse of the simulation. The num-
ber of cells on the two coarser levels remains roughly
the same.

tional cells are selected to identify regions where refinement
is needed. Our load balance approach distributes sets of
patches to different processors. Cell-tagging is performed on
each patch separately and is therefore quite scalable. We use
the signature pattern recognition algorithm of Berger and
Rigoutsos [4] to cluster tagged cells into logically-rectangular
patch regions. Note that re-meshing and integration opera-
tions are performed one level at a time. Thus, each level is
load balanced separately from the others.

The Berger-Rigoutsos algorithm implementation in SAM-
RAI performs parallel array reductions over the irregular
grid structure to build tag signature arrays on each proces-
sor. The accumulation of the tagged cells into signature ar-
rays uses global all-reduce operations. These collective com-
munication operations synchronize the procedure on each
processor so that the processors construct identical box re-
gions from which to build new patches. This implementation
was intended for small numbers of processors where the cost

of global all-reduce operations are negligible.

The boxes constructed by the Berger-Rigoutsos algorithm
are further massaged for load balancing. For example, a
large box may be chopped into a set of smaller boxes to
make it easier to assign the boxes to processors. Each box is
chopped until its size is less than the per-processor average
size, computed by dividing the total number of computa-
tional cells by number of processors. Boxes are then ordered
according to their spatial location using a Morton space fill-
ing curve algorithm [9] which places a curve through the box
centers and partitions the curve. The goal of this last step is
to maximize the assignment of adjacent patches to the same
processor. The boxes assigned to each processor are used to
generate patches on that processor.

Once a new patch level is constructed and load balanced, the
integration algorithm constructs new communication sched-
ules for the new patch configuration. The use of communi-
cation schedules in SAMRAI is discussed in detail in [13].
Briefly, a schedule is a list of transactions that must take
place to satisfy filling data in certain regions of patches. For
example, fine level patches may need to interpolate data
from a coarser level in the hierarchy, or exchange data with
neighboring patches of the same refinement. The commu-
nication schedule holds a list of transactions for each patch
local to its processor which defines 1) the region of data that
must be updated, and 2) the patch that will supply this
data. The patch supplying the data may be either local or
located on another processor. The list of transactions main-
tained by the schedule is used to build asynchronous MPI
message streams that are exchanged when communication
is invoked. For a particular grid configuration, a schedule,
once constructed, may be used over and over to exchange
data in the grid hierarchy. But when the grid configura-
tion changes, and a new set of patches is constructed, the
schedule must be reconstructed.

We investigate parallel performance of two adaptive prob-
lems implemented using SAMRAI. The first models a 3D
propagating spherical shock with the Euler equations of gas
dynamics. This problem is not scaled; that is, the same sized
problem is run on all processor partitions. The second prob-
lem models a 3D sinusoidal advecting front with the scalar
linear advection equation. This problem is scaled, in that
the problem size increases proportionately with number of
processors. We use the non-scaled problem to investigate
how SAMR calculation perform when processors are added
to a fixed problem. We use the scaled problem to study
trends as problem size is increased as more processors are
applied.

Both problems employ the hyperbolic time integration algo-
rithm supplied by SAMRAI. They differ only in the number
of variables involved and the operations performed in the
numerical kernels. One solution variable appears in the lin-
ear advection application while a system of five variables
represents the solution in the Euler case. Because the com-
putational effort to update the numerical solution in the lin-
ear advection case is less, the linear advection problem has
higher data communication and re-meshing costs relative to
total computation time than the Euler case.



4.2 Non-scaled Problem
The adaptive Euler hydrodynamics problem is solved using
three levels of mesh resolution where the mesh is refined
by a factor of four between successive levels; see Figure 3.
Figure 4 shows how the number of computational cells on
each level changes with simulation time. The number of
cells on the finest level constitutes 94% – 96% of the total
cells in the calculation. Of the total time spent in the time
integration portion of the solution process, 97% – 98% is
spent on the finest level for all processor partitions. Problem
size grows roughly linearly as the simulation advances during
the course of the 15 coarsest grid timesteps over which we
ran the computation. This growth is due from the fine mesh
adapting to resolve the spherically-expanding shock. The
same problem size is used on all processor partitions.

The two primary phases of the calculation are grid gener-
ation and time integration. Grid generation involves three
major steps: construction of new patch regions from tagged
cells (Berger-Rigoutsos procedure plus load balance), con-
struction of communication schedules, and data movement
from the old mesh configuration to the new configuration.
Time integration uses numerical routines outside of SAM-
RAI. Data movement to fill ghost cell regions during time
integration and to redistribute data during re-meshing is
performed by SAMRAI.

4.3 Scaled Problem
Scaled parallel speedup studies are performed with an ad-
vecting sinusoidal front problem. In this experiment, we
control the mesh generation process by manually scaling the
mesh so that the number of gridcells per processor remains
constant for the duration of each computation. To do this,
we first run a problem on P processors and store the mesh
after each re-meshing step. This mesh is then refined as we
increase the number of processors. To go from P to 2P pro-
cessors, we double the number of cells in one direction. To
go from 2P to 4P , we double the cells in an additional di-
rection, and so on. The use of the linear advection equation
allows us to force the same time-stepping sequence on all re-
fined grids. The use of a sinusoidal front helps us make grid
configurations more representative of typical SAMR prob-
lems.

The adaptive problem uses three levels of mesh resolution
where the mesh is refined by a factor of four between lev-
els, as shown in Figure 5. Figure 6 shows how the number
of computational cells on each level changes with simula-
tion time. As was the case with the non-scaled spherical
shock problem, the vast majority of cells are on the finest
refinement level. However, note that the overall problem
size remains roughly constant over the course of the com-
putation. The calculation is run over a total of 25 coarsest
grid timesteps.

5. ADAPTIVE GRIDDING PERFORMANCE
The two primary phases of the calculation are grid gener-
ation and time integration. Previous results [13] for the
benchmarks described in section 4 revealed scaling inefficien-
cies primarily in the grid generation phase of the calculation.
Grid generation involves three major steps: construction of
new patch regions from tagged cells (Berger-Rigoutsos pro-
cedure plus load balance), construction of communication

Figure 5: Scaled advecting sinusoidal front problem
- density contours overlaid on adaptive grid.
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Figure 6: The number of computational cells on each
level for the 32 processor case of the scaled advecting
front calculation. Unlike the non-scaled case, the
problem size stays roughly constant. For the 64, 128,
256, and 512 processor cases, the pattern is identical
but the number of cells increases proportionally (e.g.
64 processor case has 2X cells of the 32 processor
case, etc.).



schedules, and data movement from the old mesh configu-
ration to the new configuration. One may suspect the most
inefficient part of the grid generation process on parallel sys-
tems is the data redistribution step. However, we found this
step is quite fast, requiring less than 1% of the total ex-
ecution time on the spectrum of processors tested. Also,
the data redistribution phase scaled reasonably well as we
increased the number of processors. The primary sources
of inefficiency were actually the Berger-Rigoutsos clustering
and schedule construction phases. These two phases showed
negative scaling characteristics. That is, their total parallel
processing time actually increased with increasing number
of processors.

In our original tests with a scaled adaptive benchmark, we
found that as the problem size increases proportionally to
the number of processors, the cost to construct commu-
nication schedules also grows with the problem size. For
smaller problems, the communication schedule construction
cost was reasonably small. For example, in the sinusoidal
front calculation performed on 32 processors, the cost to
construct schedules is 14% of the total time. But as the
problem is scaled up to run on more processors, the time
to construct the communication schedules rapidly becomes
the dominant cost in the calculation, due to poor scaling
qualities.

The second scaling inefficiency was in the Berger-Rigoutsos
algorithm. For the fixed-size spherical shock benchmark,
we found the cost of this phase of the calculation increased.
Consider that because the problem size is fixed, even with no
scaling the wallclock time should remain constant with in-
creasing number of processors. The fact that it is increasing
clearly indicates a scaling problem! As with the commu-
nication schedule costs, Berger-Rigoutsos trivial on smaller
numbers of processors but its poor scaling causes it to be-
comes non-trivial on larger numbers. In the spherical shock
problem, Berger-Rigoutsos used less than 1% of the total
time on 32 processors but used 26% of the time on 512 pro-
cessors.

6. MODIFIED ALGORITHMS
Previous work, summarized above, showed that communi-
cation schedule construction costs and the cost of perform-
ing Berger-Rigoutsos clustering can have a large impact on
SAMR performance when running large problems on large
numbers of processors. There are some basic strategies that
can be employed to lessen these costs within the existing
algorithm. First, one may reduce the re-gridding interval,
thereby reducing the number of times the inefficient opera-
tions are called. The drawback with this approach is that
it is necessary to employ a larger refined region to contain
important flow features within the refined level, and avoid
it moving into coarser levels where solution fidelity will be
lost. Second, codes can be tuned to generate fewer, larger
patches rather than many smaller patches. This is advan-
tageous since our experience was that the cost of schedule
construction grows roughly as O(N 2), where N is the to-
tal number of patches used in the problem. Unfortunately,
optimal load balancing is most efficient when the problem
has many smaller patches so there arises a tradeoff in the
optimization strategies for load balance and communication
schedule generation cost.

In this work, we investigate alternative algorithms that can
enhance the efficiency of the re-gridding operations with-
out having to resort to modification of the problem itself to
improve efficiency.

6.1 Communication Schedules
The original implementation of the schedule construction al-
gorithm used an approach that compared the patch bound-
ing indices of all patches to one another. For example, in
order to fill ghost regions of a patch, we computed so-called
box intersections (a box is simply the index space of the
patch) by comparing each patch against all others in the
problem. Boxes are represented by very simple data struc-
tures; the only information one has is the logical Cartesian
coordinates of upper and lower corners. This O(N 2) cost
algorithm (N is the total number of patches in the problem)
worked well as long as N remained reasonably small. How-
ever, N tends to grow proportionately with the number of
processors so when the problem size is scaled to large paral-
lel systems, the cost of this algorithm becomes prohibitive.

We propose two alternatives, discussed in the following sub-
sections, to replace the O(N2) algorithms with algorithms
of lower complexity. Although difficult to analyze precisely,
in practice the new algorithms appear to have asymptotic
running times of O(N3/2) and O(N logN).

6.1.1 BoxGraph algorithm
In the first approach, we developed a graph theoretic model
of the box-intersection problem. We theorized a graph,
G(V,E), whose vertex set V contains a vertex correspond-
ing to every box in the problem, and whose edgeset E con-
tains an edge (i, j) if and only if the boxes corresponding
to vertices i and j intersect. If we could construct such a
graph efficiently in practice, then solving the box intersec-
tion problem becomes trivial: to find all boxes that intersect
a given box, one simply examines the adjacency list of the
corresponding vertex.

The BoxGraph algorithm we designed for constructing a
BoxGraph is summarized below. The algorithm operates
on a type of divide-and-conquer approach. The O(N) boxes

are partitioned into
√
N subsets; the naive algorithm is ap-

plied to each subset to form a collection of subgraphs; and
the subgraphs are assembled to form the global graph.

ConstructBoxGraph(boxlist B, boxlist C)
0. Form set S to be the union of B and C.
1. Select a sorting key and sort the boxes in S.
2. Assuming S contains n elements, divide the sorted list
into

√
n bins.

3. Apply the naive algorithm to form a subgraph in each bin.
4. Union the subgraphs to form the BoxGraph.

This approach requires that, to the largest extent possible,
boxes within a subset intersect only with other boxes in
the same subset. We use a heuristic box-sorting method
to attempt to enforce this constraint. Boxes are sorted by
picking a sort direction, i.e., x, y, or z with respect to the



Cartesian coordinate system, then sorting boxes by the co-
ordinate of a specified edge. For example, we can sort boxes
by placing them in non-decreasing order with respect to the
x-coordinate of their left-hand edges. Once sorted, parti-
tioning is easily performed, e.g., by throwing the left-most√
N boxes in the first subset, the next

√
N boxes in the

second subset, and so on. The BoxGraph construction algo-
rithm is illustrated in Figure 7.

Analytically it can be shown that, in the worst case (e.g.,
every box intersects at least one box in every subset) Box-
Graph construction can incur a runtime cost as high as
O(N5/2), which is worse than the naive approach. In prac-
tice, however, we have found that construction cost always
appears to perform O(N3/2).

6.1.2 BoxTop algorithm
In our second approach we also perform a preprocessing
phase that consists of sorting boxes. In this approach we
sort boxes in every possible direction, e.g., in 2D we would
construct four arrays, and sort the boxes by left-hand side,
right-hand side, top, and bottom. During a box-intersection
operation we use these arrays in conjunction with binary
search to obtain a (hopefully small) subset of boxes with
which a box of interest may intersect.

The arrays are used per the following example. The coordi-
nate of the right-hand side of a box of interest is compared
against the array of boxes that are sorted by their left-hand
sides. A box b[j] in the array can only intersect with the box
of interest if the coordinate of b[j]’s left-hand side is less than
the box of interest’s right-hand side. Binary search, which
takes 0(

√
N) time, is used to locate the box (if any) that

meets this criteria and for which j is as large as possible.
The boxes in array positions 1..j then form a “candidate”
subset with which the box of interest may intersect. How-
ever, boxes in this subset are not guaranteed to intersect
with the box of interest.

In 2D we process all four arrays (six arrays in 3D), and
choose the smallest subset. We then apply the naive algo-
rithm against every box in the chosen subset. This gives
the exact subset of boxes with which the box of interest
intersects.

6.1.3 Comparison of BoxTop and BoxGraph
Both BoxTop and BoxGraph methods were used in a revi-
sion of our schedule construction algorithms. The BoxGraph
construction preprocessing phase requires as input two lists
of boxes, e.g., a list of boxes from a level j, and a list of boxes
from a level j − 1 from which the ghost regions on level j
are to be filled. In contrast, the BoxTop preprocessing phase
requires a single list of boxes as input, and can hence be per-
formed, during level construction. Hence, there are places
in the code where it is more “natural” to use BoxTop, and
other places where BoxGraph is more appropriate.

As illustrated in Figure 8, both methods are in practice
much faster than the naive approach. Runtime for the Box-
Top preprocessing phase is bounded below by Ω(N 3/2). This
is a lower bound since, as explained above, if there are many
intersections between boxes in different subsets, the com-
plexity can be as high as O(N5/2). After construction, find-
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ing the boxes that intersect any given box is an 0(1) oper-
ation. The BoxGraph preprocessing phase is bounded by
Ω(N logN), which is a well-known bound on sorting. Af-
ter construction, finding the boxes that intersect any given
box is bounded below by Ω(logN). O(logN) is the time
required for binary search; this is a lower bound, however,
since there is no guarantee that the smallest subset will be
smaller than N .

6.2 Berger-Rigoutsos
The signature pattern recognition algorithm of Berger and
Rigoutsos [4] is used during regridding to cluster tagged cells
into logically-rectangular patch regions. The algorithm pro-
ceeds as follows:

BR Cluster(box in, boxlist out)
1. Compute signature arrays in each direction.
(see Figure 9)

2. Compute Gaussian (2nd derivative) of the signature.
3. Compute an inflection point where Gaussian changes
most rapidly. (Either along the x or y direction.)

4. Split box in into two new boxes at inflection point.
5. For each of the two new boxes:
5a. Append the new box to boxlist out.
5b. If efficiency constraints are not met, recurse.

3 2 2 1 3 3 5

1
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6

Figure 9: Computation of signature arrays. A 2D
rectangular domain consisting of four patches is
shown. Darkened circles indicate tagged cells. The
signature arrays are the numbers along the bottom
and right side; they indicate the number of tagged
cells in each column and row.

The input is a box that encompasses all tagged cells. The
output is a list of generated boxes. An example efficiency
constraint is that the ratio of untagged to tagged cells within
a box be less than some specified value.

In the SAMRAI implementation, each processor has a list of
all boxes on a given level. However, the data associated with
a particular box (i.e., the “patches”) are distributed across
processors. Computational cells that are tagged to iden-
tify regions where refinement is needed is performed local
to each processor, on the patches it owns, so cell-tagging is
quite scalable. The inefficiency arises in the accumulation of
tagged cells into signature arrays. Our original implementa-
tion used global all-reduce operations to form the signature
arrays on each processor (Step 1 of the BR Cluster algo-
rithm). For the remaining steps, processors use this data in
an identical fashion to partition the box into logically rect-
angular regions, which are the foundation of the next set of
patches.

Our intuition was that, on average, only a small number
of processors actually need to participate in signature array
computations. Processors that do not own any patches that
intersect the box currently being split (at some level of re-
cursion) have no information to add to the signature arrays.
Moreover, such a processor does not need to participate in
any deeper recursive call. If we could avoid having these
processors participate in the all-reduce operations, then we
might be able to greatly reduce the collective communica-
tion costs.

To test this idea we instrumented our code to record var-
ious statistics during the Berger-Rigoutsos operation. The
results, which are summarized in Table 1 confirmed our sus-
picion that, during the majority of the recursions, only a
small subset of processors had relevant tagged cell data. For
example, referencing the line for the 5th recursion level, we



Table 1: Berger-Rigoutsos participation for a 5-step
Euler sphere computation on 128 processors. There
were a total of 588 calls to Berger-Rigoutsos.

Recursion Participating Percent of
Level processors total calls
11 2 1.4
10 4 7.1
9 8 17
8 8 30.6
7 8 46.3
6 8 61.9
5 18 74.5
4 32 84.7
3 80 91.5
2 80 95.6
1 100 98
0 125 100

see that 74.5% of all calls to Berger-Rigoutsos required 18
or fewer processors.

These observations led to a reformulation of our Berger-
Rigoutsos implementation, which is summarized as follows:

BR Cluster Mod1(box in, boxlist out)
1. If this processor has no box that intersects with box in
and this is not the root processor, then return.

2. Form communicator with remaining processors.
3. Compute signature arrays in each direction, using
all-to-one reduction, with the result stored on the
root processor.

4. If this is the root processor:
4a. Compute Gaussian (2nd derivative) of the signature.
4b. Compute an inflection point where Gaussian changes

most rapidly.
4c. Split box in into two new boxes at inflection point.
4d. Append the new boxes to boxlist out.
5. Root processor broadcasts the two new boxes to all
processors in the current communicator.

6. For each of the two new boxes:
6a. If efficiency constraints are not met, recurse.
7. If this is the outermost recursion level, the root processor
broadcasts boxlist out to all other processors.

In addition to having a list of all boxes on a given level, each
processor has an array that maps every box to the processor
that owns it. This information is used in Step 2. If there are
p processors in the current communicator that cumulatively
own m boxes, then determining which processors partici-
pate in the new communicator can be accomplished in O(m)
time. Note that, in Step 11, the contents of boxlist out af-
ter the recursion returns are really only meaningful to the
root processor, since other processors will have partial lists.

7. PERFORMANCE RESULTS
We compare performance of the algorithms described in sec-
tion 6 used for the application benchmarks described in sec-
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Figure 10: Cost to generate communication sched-
ules in the scaled advection front problem. The col-
umn labeled “orig” was measured with our original
implementation, while “new” is the modified im-
plementation using coupled BoxGraph-BoxTop al-
gorithms to compute box intersections.

tion 4. The benchmarks are run on the IBM ASCI Blue
Pacific system, which is constructed of 256 four processor
SMP nodes, 244 of which are available for typical batch
runs. Each processor is a 332 MHz PowerPC 604e. Each
node has 1.5 GB memory. An omega topology interconnect
network supports up to 150Mbytes/s bi-directional band-
width between nodes.

7.1 Modi£ed Algorithm Performance
The time to construct communication schedules using the
new BoxGraph-BoxTop algorithms was measured for the
scaled scalar advection benchmark. Figure 10 shows the
schedule construction time for the benchmark using our orig-
inal algorithm and the new BoxGraph-BoxTop algorithm.
Clearly, the new algorithm shows considerable improvement
over our original implementation.

We next compare the time to construct new level boxes from
clustered cells using our new parallel implementation of the
Berger-Rigoutsos algorithm. Figure 11 shows the time to
perform the operation using our original implementation
compared to the new implementation that uses a binary-
tree reduction for the non-scaled spherical shock benchmark.
The improved parallel implementation of Berger-Rigoutsos
is considerably faster than our original implementation.

7.2 Non-scaled Benchmark Performance
This section discusses the performance measured for the
adaptive spherical shock benchmark discussed in section 4.2.
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Figure 12: Wallclock time measurements from Table
2 for non-scaled spherical shock calculation.

Table 2 shows the timings of the non-scaled spherical shock
benchmark run on the IBM. Wallclock times measured on
different processor partitions are reported. Timings are de-
composed into the time integration and grid generation phases.
The entry labeled “other” includes parts of the calculation
that fell outside the time integration and grid generation
phases, such as cell-tagging, level data initialization, and
load balancing. The breakdown of time integration and re-
gridding is also shown in the plot in Fig. 12.

We expect to see some reduction in parallel efficiency be-
cause the same problem is run on all processor partitions,
hence the problem size per processor decreases as the num-
ber of processors is scaled up while collective communication
costs necessarily increase. In spite of this, we still see rea-
sonable parallel scaling for this adaptive problem. Note that
the time spent in Berger-Rigoutsos is minimal on all proces-
sor partitions. The schedule construction is still the most
costly phase of the regridding operations but still represents
a reasonably small percentage of the total cost.

7.3 Scaled Problem Performance
The improvements in the schedule construction costs allow
us to achieve reasonably good scaling efficiency for this adap-
tive problem. Table 3 shows the measured wallclock timings
of the scaled advecting sinusoidal front benchmark. The
breakdown of time integration and regridding is also shown
in the plot in Fig. 13.

The time integration phase of the calculation is scaling quite
well. Note that communication costs, including both com-
munication of ghost cells during time integration and data
redistribution during regridding, constitute a fairly small
percentage of the total costs. The regridding phase of the
calculation shows poorer scaling than the operations in the
time integration phase algorithm, but is considerably better
than results we reported previously. Regridding constitutes



Processors 32 64 128 256 512
Total 2458.3 1320.5 773.9 511.3 405.7
Time Integration 2372.8 97% 1256.3 95% 701.8 91% 433.6 85% 290.9 72%
Computation - num kernels 2208.1 90% 1160.1 88% 636.7 82% 388.2 76% 258.8 64%
Communication overhead 164.7 7% 96.2 7% 65.1 8% 45.4 9% 32.1 8%
Grid Generation 50.5 2% 40.3 3% 50.6 7% 58.5 11% 88.0 21%
Schedule construction 35.7 2% 30.9 2% 41.5 5% 50.8 10% 76.8 19%
Berger Rigoutsos 2.8 0% 2.6 0% 5.2 1% 5.3 1% 9.5 2%
Data re-distribution 12.0 1% 6.8 1% 3.9 1% 2.5 1% 1.8 1%
Other 35.0 1% 23.9 2% 21.4 3% 19.1 4% 26.8 7%

Table 2: Timing results for non-scaled spherical shock calculation. Results show wallclock time for each
operation and percentage of total wallclock time for the different phases of the calculation.

Processors 32 64 128 256 512
Total 509.7 549.9 630.0 780.7 1226.3
Time Integration 468.0 92% 482.1 88% 497.9 79% 509.1 65% 552.8 45%
Computation - num kernels 461.3 91% 472.0 86% 485.0 77% 498.0 64% 520.6 43%
Communication overhead 6.7 1% 10.1 2% 12.9 2% 11.0 1% 32.1 3%
Grid Generation 15.0 3% 41.4 8% 94.2 15% 207.5 27% 563.6 46%
Schedule construction 13.9 3% 40.3 7% 93.1 15% 206.5 26% 562.5 46%
Data re-distribution 1.1 0% 1.1 0% 1.1 0% 1.1 0% 1.1 0%
Other 26.7 5% 26.4 5% 37.9 6% 64.1 8% 109.9 9%

Table 3: Timing results for scaled advecting front calculation. Results show wallclock time for each operation
and percentage of total wallclock time for the two main phases of the calculation, time integration and grid
generation.
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Figure 13: Wallclock time measurements from Table
3 for scaled advecting front calculation.

a small percentage of the overall time except on the largest
processor partitions.

A consideration that should be noted is that this scalar ad-
vection benchmark involves very simple numerical kernels
and solves only a single flow variable Hence, the time in-
tegration costs in this benchmark are relatively low com-
pared to a typical adaptive multi-physics application imple-
mented in SAMRAI. On the other hand, regridding costs
depend primarily on box operations and not on numerical
computations so, for the same dynamic mesh configuration,
regridding costs for this benchmark will be comparable to
more numerically intensive multi-physics applications. We
therefore expect that in practice, regridding will constitute a
lower proportion of the total time than what this benchmark
demonstrates.

8. CONCLUDING REMARKS
This paper investigates algorithms to enhance the scaling ef-
ficiency of structured adaptive mesh refinement (SAMR) ap-
plications. In results reported in earlier work [13] we showed
that the core numerical kernel operations scaled quite well.
Communication constituted a relatively small percentage (<
10%) of the total time. The primary source of scaling in-
efficiency on large processor counts was adaptive gridding
operations. That is, the operations associated with dynam-
ically evolving the mesh to track the feature of interest. For
cases run on less than 64 processors, the standard algorithms
used in adaptive gridding generally worked well. They con-
stituted a sufficiently small percentage of time that any lack
of scaling efficiency could be ignored. However, as larger
problems were run on larger numbers of processors, poor



scaling efficiency caused of adaptive gridding costs to dom-
inate. We introduce algorithms to enhance the efficiency
of adaptive gridding and demonstrate their performance on
two adaptive benchmarks run on up to 512 processors.

Communication schedules, which describe the dependencies
between patches on different levels of refinement, must be
reconstructed each time the grid changes in a dynamically
adaptive problem. The algorithm we originally used in con-
structing communication schedules was of O(N 2) complex-
ity, where N is the total number of patches in the prob-
lem. As the problem size grows, the number of patches also
grows and at some point the cost becomes prohibitive. We
introduce algorithms which reduce the cost to O(N logN)

and O(N3/2). In practice, this reduces the time to con-
struct communication schedules to the point that the cost
is comparable to the numerical kernels for a scaled adaptive
problem on 512 processors. The modified algorithms are
significantly better than our previous algorithm, for which
the communication schedule construction far outweighed all
other costs with this case.

The process of constructing new patches from regions tagged
for refinement was another source of inefficiency. We re-
placed our original parallel implementation of the Berger-
Rigoutsos algorithm, which used global reductions, with an
implementation that uses a binary-tree reduction algorithm.
In an adaptive benchmark resolving a moving spherical shock,
the new implementation reduced the time of this operation
from 23% of the total with the original implementation to
only 2% with the modified implementation.

In the scaling studies performed in this work on up to 512
processors, indications are that the core numerical opera-
tions and communication should continue to scale to larger
numbers of processors. On the other hand, adaptive grid-
ding costs begin to become more dominant on larger proces-
sor partitions. Although we were able to make significant
progress in reducing their costs through the use of more ef-
ficient algorithms, further enhancements will likely be nec-
essary as we push to larger numbers of processors.

9. FINAL PAPER
We are currently evaluating performance of our adaptive
benchmarks on a linux cluster system, containing 1152 dual-
processor 2.4GHz Intel nodes with a high-speed Quadrics
switch that has a sustained transfer rate of 220 MB/s and
< 5µs latency. Although we were not able to get results in
time for this paper, we expect to have results shortly that
will be included in the final version of the paper.
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